A Parisi equation for Sompolinsky's solution of the SK model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 15 L47
(http://iopscience.iop.org/0305-4470/15/1/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 14:50

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A Parisi equation for Sompolinsky's solution of the sk model

C de Dominicis, M Gabay† and B Duplantier
Service de Physique Théorique, CEN-SACLAY, 91191, Gif-sur-Yvette, France \dagger Laboratoire de Physique des Solides, Université Paris-Sud, Centre d'Orsay, 91405 Orsay, France

Received 5 October 1981

Abstract

Using a replica formalism, we show how Sompolinsky's free energy functional for the sK model of spin glasses can be expressed as the solution of a differential equation; as a special case, one recovers Parisi's equation.

The sK model of a spin glass (Sherrington and Kirkpatrick 1975) has recently been considered from a dynamical point of view by Sompolinsky (1981). His description involves a double continuum of order parameters, $q(x)$ and $\Delta^{\prime}(x)$, and contains the salient features of Parisi's solution (Parisi 1980a and references therein). Subsequently, DGO (de Dominicis et al 1981) have shown how Sompolinsky's free energy functional can be recovered on a static basis, using the replica method.

It is the purpose of the present Letter to write this free energy in terms of the solution of a differential equation subject to a certain boundary condition. Further, on setting $\Delta^{\prime}(x)=-x q^{\prime}$, Parisi's differential equation (Parisi 1980b, Duplantier 1981) is recovered.

In a field h, the free energy functional per spin of the sK model reads
$-\frac{f}{T}=\frac{J^{2}}{4 T^{2}}+\lim _{n \rightarrow 0} \frac{1}{n} \max \left[-\frac{J^{2}}{4 T^{2}} \sum_{\alpha \neq \beta} q_{\alpha \beta}^{2}+\ln \operatorname{Tr}_{(n)} \exp \left(\frac{J^{2}}{2 T^{2}} \sum_{\alpha \neq \beta} q_{\alpha \beta} \sigma_{\alpha} \sigma_{\beta}+\frac{h}{T} \sum_{\alpha} \sigma_{\alpha}\right)\right]$
where $\operatorname{Tr}_{(n)}$ means the trace over n replicas. In the DGO iteration scheme, the $q_{\alpha \beta}$ matrix is initially divided into n / p_{0} diagonal $p_{0} \times p_{0}$ blocks (of elements q_{0}) and (n / p_{0}) $\left(n / p_{0}-1\right)$ off-diagonal blocks (of elements r_{0}). The transformation consists in applying a Parisilike scheme on both q_{0} and r_{0} blocks.

Using this transformation K times, with block sizes $p_{0}, p_{1}, \ldots p_{K}$ yields

$$
\begin{equation*}
-\frac{f}{T}=\frac{J^{2}}{4 T^{2}}\left(\left(q_{K}-1\right)^{2}+2 \sum_{l=0}^{K} q_{l} \Delta_{l}^{\prime}\right)+\lim _{\substack{n \rightarrow 0 \\ p_{0} \gg p_{1} \gg \ldots \gg p_{K} \rightarrow \infty}} G_{-1}(h) \tag{2}
\end{equation*}
$$

where $p_{0}, p_{1}, \ldots, p_{K}$ go to infinity successively and in order, and with

$$
\begin{aligned}
\operatorname{expn} G_{-1}(h) & =\underset{(n)}{\operatorname{Tr}} \exp \left(\frac{J^{2}}{2 T^{2}} \sum_{\alpha \neq \beta} q_{\alpha \beta} \sigma_{\alpha} \sigma_{\beta}+\frac{J^{2}}{2 T^{2}} n q_{K}+\frac{h}{T} \sum_{\alpha} \sigma_{\alpha}\right) \\
& =\int \frac{\mathrm{d} z_{0}}{\sqrt{2 \pi}} \exp -\frac{z_{0}^{2}}{z} \prod_{j_{1}}^{2} \frac{\mathrm{~d} z_{j_{1}}}{\sqrt{2 \pi}} \exp -\frac{1}{2} z_{j_{1}}^{2} \ldots \prod_{j_{1} \ldots j_{k}} \exp -\frac{1}{2} z_{j_{1} \ldots i_{K}}^{2}
\end{aligned}
$$

$$
\begin{align*}
& \times \prod_{j_{0}=1}^{n / p_{0}}\left[\int \frac{\mathrm{~d} y_{i_{0}}}{\sqrt{2 \pi}} \exp -p_{0} \frac{1}{2} y_{i_{0}}^{2} \prod_{i_{1}=1}^{p_{0} / p_{1}}\left(\int \frac{\mathrm{~d} y_{j_{0} j_{1}}}{\sqrt{2 \pi}} \exp -p_{1} \frac{1}{2} y_{j_{0} j_{1}}^{2}\right.\right. \\
& \times \prod_{i_{2}=1}^{p_{1} / p_{2}}\left\{\cdots \prod _ { i _ { K } = 1 } ^ { p _ { K - 1 } / p _ { K } } \left[\int \frac{\mathrm{~d} y_{j_{0} \ldots j_{K}}}{\sqrt{2 \pi}} \exp -p_{K} \frac{1}{2} y_{i_{0} \ldots j_{K}}^{2}\right.\right. \\
& \times \exp p_{K} \ln 2 \cosh \left(\frac{h}{T}+\frac{J}{T} q_{0}^{1 / 2} z_{0}+\ldots+\frac{J}{T}\left(q_{K}-q_{K-1}\right)^{1 / 2} z_{j_{1} \ldots i_{K}}\right. \\
& \left.\left.\left.\left.\left.+\frac{J}{T}\left(-\Delta_{0}^{\prime}\right)^{1 / 2} y_{j_{1}}+\ldots+\frac{J}{T}\left(-\Delta_{K}^{\prime}\right)^{1 / 2} y_{j_{0} \ldots j_{K}}\right)\right] \ldots\right\}\right)\right] \tag{3}
\end{align*}
$$

where we have dropped p factors that do not contribute in the limit $n \rightarrow 0$, $p_{0} \gg p_{1} \gg \ldots \gg p_{K} \rightarrow \infty$.

Following Parisi this structure suggests introducing quantities G_{l} such that $\exp p_{l-1} G_{l-1}(h)$

$$
\begin{align*}
= & \int \frac{\mathrm{d} z_{l}}{\sqrt{2 \pi}} \exp -\frac{1}{2} z_{l}^{2} \\
& \times\left(\int \frac{\mathrm{d} y_{l}}{\sqrt{2 \pi}} \exp p_{l}\left[-\frac{1}{2} y_{l}^{2}+G_{l}\left(h+J \sqrt{q_{l}-q_{l-1}} z_{l}+J \sqrt{-\Delta_{l}^{\prime}} y_{l}\right)\right]\right)^{p_{l-1} / p_{l}} \\
& l=0,1, \ldots K \quad p_{-1} \equiv n \quad q_{-1} \equiv 0 \tag{4}
\end{align*}
$$

with

$$
\begin{align*}
\exp p_{l} G_{l}(h+ & \left.J \sqrt{q_{l}-q_{l-1}} z_{l}+J \sqrt{-\Delta_{l}^{\prime}} y_{l}\right) \\
= & \operatorname{Tr} \exp \left\{\left[\sum_{i=0}^{l}\left(\frac{J}{T} \sqrt{q_{i}-q_{i-1}} z_{i}+\frac{J}{T} \sqrt{-\Delta_{i}^{\prime}} y_{i}\right)+\frac{h}{T}\right]\right. \\
& \times \sum_{\alpha=1}^{p_{l}} \sigma_{l}+\frac{J^{2}}{2 T^{2}} \sum_{\alpha \neq \beta}^{p_{l}}\left(q_{\alpha \beta}\left(q_{\alpha \beta}-q_{l}\right) \sigma_{\alpha} \sigma_{\beta}\right\} \tag{5}
\end{align*}
$$

(y_{l}, z_{i} stand for $y_{i_{0} \ldots j_{i}}$ and $z_{j_{1} \ldots j_{i}}$ respectively). Note that the block structure appearing in DGO is recovered by writing the last term in (5) as

$$
\sum_{\alpha \neq \beta}^{p_{l}}\left(r_{\alpha \beta}-r_{l}\right) \sigma_{\alpha} \sigma_{\beta}+\sum_{\alpha \neq \beta}^{p_{l}}\left[\left(q_{\alpha \beta}-q_{l}\right)-\left(r_{\alpha \beta}-r_{l}\right)\right] \sigma_{\alpha} \sigma_{\beta}
$$

where the diagonal ($q_{\alpha \beta}$) and off-diagonal ($r_{\alpha \beta}$) blocks are now exhibited. In the limit $p_{l} \rightarrow \infty$, a saddle point method on the y_{l} variable of equation (4) yields

$$
\begin{equation*}
y_{c}=\partial G_{l} / \partial y_{c} \tag{6a}
\end{equation*}
$$

$\exp p_{l-1} G_{l-1}(h)=\int \frac{\mathrm{d} z_{l}}{\sqrt{2} \pi} \exp -\frac{1}{2} z_{l}^{2}$

$$
\begin{equation*}
\times \exp p_{l-1}\left\{-\frac{1}{2} y_{c}^{2}+G_{l}\left(h+J \sqrt{q_{l}-q_{l-1}} z_{l}+J \sqrt{-\Delta_{l}^{\prime}} y_{c}\right)\right\} \tag{6b}
\end{equation*}
$$

As $K \rightarrow \infty, l / K \rightarrow x, G_{l}(h) \rightarrow G(x, h)$ and, to order $\delta x, q_{l}-q_{l-1} \rightarrow q^{\prime}(x) \delta x$,

$$
\begin{gathered}
\Delta_{l}^{\prime} \rightarrow \Delta^{\prime}(x) \delta x \quad y_{c} \rightarrow J\left(-\Delta^{\prime}(x) \delta x\right)^{1 / 2}(\partial G / \partial h) \\
G_{l} \rightarrow G(x, h)+J \sqrt{q^{\prime}(x) \delta x z}(\partial G / \partial h)+\frac{1}{2} J^{2} z^{2} q^{\prime}(x) \delta x\left(\partial^{2} G / \partial h^{2}\right)-J^{2} \Delta^{\prime}(x) \delta x(\partial G / \partial h)^{2} .
\end{gathered}
$$

Inserting these expressions in (6b) and identifying the coefficients of the expansion in powers of p_{l-1} of the left- and right-hand side we finally obtain the desired differential equation

$$
\begin{equation*}
\frac{\partial G}{\partial x}(x, h)=-\frac{J^{2}}{2}\left\{-\Delta^{\prime}(x)\left(\frac{\partial G}{\partial h}\right)^{2}+q^{\prime}(x) \frac{\partial^{2} G}{\partial h^{2}}\right] \tag{7}
\end{equation*}
$$

From (5) it is clear that the boundary condition on (7) is the same as Parisi's

$$
\begin{equation*}
G(1, h)=\ln (2 \cosh h / T) \tag{8}
\end{equation*}
$$

Setting $l=0$ in (4) and taking the limit $K \rightarrow \infty$, the free energy (2) becomes:

$$
\begin{align*}
&-\frac{f}{T}=\frac{J^{2}}{4 T^{2}}\left\{(1-q(1))^{2}+2 \int_{0}^{1} \Delta^{\prime}(x) q(x) \mathrm{d} x\right\} \\
&+\int \frac{\mathrm{d} z}{\sqrt{2 \pi}}\left(\exp -\frac{1}{2} z^{2}\right)\left\{-\frac{1}{2}\left(\frac{\partial G}{\partial y_{c}}\right)^{2}+G\left(0, h+J z \sqrt{q(0)}+J \sqrt{-\Delta^{\prime}(0)} \frac{\partial G}{\partial y_{c}}\right)\right] \tag{9}\\
& y_{c}=\frac{\partial G}{\partial y_{c}}\left(0, h+J z \sqrt{q(0)}+J \sqrt{-\Delta^{\prime}(0)} y_{c}\right) .
\end{align*}
$$

If we let $\Delta^{\prime}(x)=-x q^{\prime}(x)$, it is easily seen that (7) and (9) reduce to Parisi's form.
Note that, defining $u(x)=-\Delta^{\prime}(x) / q^{\prime}(x)$, provided $u(x)$ is monotonic, (7) reduces to

$$
\begin{equation*}
\frac{\partial G}{\partial u}(u, h)=-\frac{1}{2} J^{2} q^{\prime}(u)\left[u\left(\frac{\partial G}{\partial h}\right)^{2}+\frac{\partial^{2} G}{\partial h^{2}}\right] \tag{10}
\end{equation*}
$$

which is the standard form of Parisi's equation (Parisi 1980b). However, the free energy (9) and equation (10) become identical to Parisi's results only in the case when $u(0)$ and $u(1)=1$.

This is more general than any standard reparametrisation in Parisi's case ($x \rightarrow m(x)$, $m(x)$ arbitrary monotonic function) which, as one can easily check, leaves boundaries [0,1], differential equation and free energy invariant.

References

de Dominicis C, Gabay M and Orland H 1981 Saclay preprint
Duplantier B 1981 J. Phys. A: Math. Gen. 14283
Parisi G 1980a Phys. Rep. 6725

- 1980b J. Phys. A: Math. Gen. 13 L115

Sherrington D and Kirkpatrick D 1975 Phys. Rev. Lett. 351792
Sompolinsky H 1981 Phys. Rev. Lett. 47935

