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t Laboratoire de Physique des Solides, Universitt Paris-Sud, Centre d’Orsay, 91405 Orsay, 
France 

Received 5 October 1981 

Abstract. Using a replica formalism, we show how Sompolinsky’s free energy functional for 
the SK model of spin glasses can be expressed as the solution of a differential equation; as a 
special case, one recovers Parisi’s equation. 

The SK model of a spin glass (Sherrington and Kirkpatrick 1975) has recently been 
considered from a dynamical point of view by Sompolinsky (1981). His description 
involves a double continuum of order parameters, q ( x )  and A’(x), and contains the 
salient features of Parisi’s solution (Parisi 1980a and references therein). Subsequently, 
DGO (de Dominicis et a1 1981) have shown how Sompolinsky’s free energy functional 
can be recovered on a static basis, using the replica method. 

It is the purpose of the present Letter to write this free energy in terms of the 
solution of a differential equation subject to a certain boundary condition. Further, on 
setting A ’ ( x )  = -xq’ ,  Parisi’s differential equation (Parisi 1980b, Duplantier 1981) is 
recovered. 

In a field h, the free energy functional per spin of the SK model reads 

where Tr(,) means the trace over n replicas. In the DGO iteration scheme, the qQs matrix 
is initially divided into n / p o  diagonal p o  x PO blocks (of elements 40)  and (n /po) (n/po  - 1) 
off -diagonal blocks (of elements ro). The transformation consists in applying a Parisi- 
like scheme on both qo and ro blocks. 

Using this transformation K times, with block sizes PO, p1, . . . p~ yields 
K - - = 7 ( ( q K - 1 ) ’ + 2  f J2 qlAi)+ lim G-l(h) 

T 4 T  l = O  n-0 
pO%pI %...%pK+m 

where po,  pl, . . . , pK go to infinity successively and in order, and with 
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where we have dropped p factors that do not contribute in the limit n+0, 
po>>p1>>...>>pK-*aV 

Following Parisi this structure suggests introducing quantities GI such that 

exp pl-1Gf-dh) 

with 

exp piGf(h + J G Z I  + JJ-yl) 

(yr, zf stand for Y~~. . .~ ,  and zil...fi respectively). Note that the block structure appearing in 
DGO is recovered by writing the last term in ( 5 )  as 

Pl PI 

a + @  a+8 
c (raa - r l ) G q 3  + c [(qas - 41) - (raa - rI)lmTe 

where the diagonal (qaa) and off-diagonal (raa) blocks are now exhibited. In the limit 
PI + a, a saddle point method on the yl variable of equation (4) yields 

Y, = aGI/ayc ( 6 ~ )  

As K +a, 1/K -* x ,  Gf(h) -* G(x, h)  and, to order ax, 41 -41-1 -* q'(x)Sx,  

A; + At(x)6x  yc + J(-A'(x)8x)1'z(aG/ah) 

GI + G(x, h)  + J m ~ ~ ( ( a G / ( a h )  + $J2zZq'(~)8~(a2G/ah2) - J2A'(~)8~(aG/ah)2. 
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Inserting these expressions in (66) and identifying the coefficients of the expansion in 
powers of of the left- and right-hand side we finally obtain the desired differential 
equation 

aG J 2  aG 
-(x, h ) =  -- ax 2 (7) 

From ( 5 )  it is clear that the boundary condition on (7) is the same as Parisi’s 

G( l ,  h )  = ln(2 cosh h/T) .  (8) 

Setting 1 = 0 in (4) and taking the limit K +CO, the free energy (2) becomes: 
1 

--=- J 2  ((1-q(1))2+21 A ’ ( x ) ~ ( x ) ~ x ]  
T 4T2 0 

+I$(exp-$z2)( -$(G) aG + G ( O , h + J z m + J m E ) ]  
a Y C  

aG 
a Y C  

yc = - (0, h + J z m +  J m y c ) .  

If we let A’(x) = -xq’(x), it is easily seen that (7) and (9) reduce to Parisi’s form. 
Note that, defining u(x) = -A’(x)/q’(x), provided u(x) is monotonic, (7) reduces to 

which is the standard form of Parisi’s equation (Parisi 1980b). However, the free 
energy (9) and equation (10) become identical to Parisi’s results only in the case when 
u(0) and u(1) = 1. 

This is more general than any standard reparametrisation in Parisi’s case ( x  + m(x) ,  
m ( x )  arbitrary monotonic function) which, as one can easily check, leaves boundaries 
[0, 13, differential equation and free energy invariant. 
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